

GRAPHICAL MODELING OF RECURSION

Rodica Baciu & Dorin Sima
"Lucian Blaga" University of Sibiu, "Hermann Oberth" Faculty of Engineering

Department of Computer Science & Automatic Control
2400, Sibiu, Str. Emil Cioran, nr.4
E-mail: rodica.baciu@ulbsibiu.ro
E-mail: dorin.sima@ulbsibiu.ro

Abstract: Recursion is a fundamental concept in
computer science. Creating a correct mental model for
the concept of recursion allows the understanding of
recursive algorithms and their correct implementation.
Teaching recursion is not an easy task for teachers.
Generally, supporting abstract concepts through graphics
leads to a better understanding of them. This paper
presents a graphical application that allows the use of
graphics in order to explain the concepts of recursion
and trees.

Key Words: recursion, octree, CAL, modeling, solid
representation

INTRODUCTION

 Recursion is a central concept in computer science,
both for theoreticians and users. The concept of
recursion places a central part in compiler cunstruction,
data structures, artificial intelligence, problem solving,
language theory, database, graphics, operating systems
and many other fields. Recursive algorithms often
provide smarter solutions to complex problems than the
iterative ones, especially when combined with recursive
data structures. The teaching experience of various
professors has proved that teaching recursion is not an
easy task. Specialized studies [Götschi 2003] have
proved that a correct mental model of recursion allows a
correct implementation of recursive algorithms.

 There are a lot of research studies on modeling and
visualization of recursion [Augenstein 1976; George
2000; Haberman 2002; Henderson 1989; Naps 1989;
Stern 2002]. For example Thomas L. Naps [Naps 1989]
shows how he built a class designed “to enable students
to annotate their Java code with visual slides that depict
the state of the algorithms they are coding.”

 Linda Stern and Lee Naish [Stern 2002] show how
they have built an application for learning programming
in which “the execution of the algorithm is traced with a
cursor that progresses through the pseudocode, while the
animation displays a conceptual representation of the
steps in the pseudocode.” They conclude “the animation

helps students to grasp the overall concept of an
algorithm, while the more detailed views help them
understand the workings of the algorithm at a procedural
level.”

 Carlisle E. George [George 2000] has implemented a
tutorial, which “uses visualization and animation as well
as sound and color to simulate the dynamic-logical
model of subprogram calls.”

 The application that we present is useful in forming
the mental concept of recursion. The verbal explanations
and the examples given for understanding the process of
recursion don't have the force of a graphical interactive
presentation. This year one of the difficulties
encountered in the final examination on the subject
“Programming in assembler language” was the
implementation of a recursive algorithm. Statistics have
shown that only 24% students implemented correctly the
algorithm and 59% haven’t even tried to solve the
problem. All the students considered that the most
difficult task was the implementation of recursion.

OCTREES

 The basis of application for recursion modeling is the
representation of solids through octrees. Octrees are
solid models that are generated by a recursive
subdivision of a finite cubic universe and that represent
the tree of the subdivision process (Figure 1). The root of
the octree represents the universe. It is a cube of edge
length 2", called the maximum scale. The scale of an
octree node is defined as the length of the edges of the
corresponding cube. The root cube is divided into eight
identical octants of scale 2n-1, which are represented by
the tree nodes pointed at by the root at the second level
of the tree. Valid terminal nodes include white nodes
(completely outside the solid) and black nodes
(completely inside the solid) (Figure 2). Whenever an
octant cannot be represented as a valid terminal node, it
is denoted as a gray node and is divided into eight other
identical cubes, which are represented as descendants of
the octant in question. This process is repeated
recursively until either terminal nodes or cubes of

mailto:rodica.baciu@ulbsibiu.ro

7

6
5

4

3
2

1

0

3

4

1

0 1
23

4 5

7 3

0 1
1

2
3

4
5

7

Figure 1 [Baciu 1999]

P F

P

Legend:
P - partial
F - full (inside the solid)
E - empty (outside the solid)

2 3 4 5 76 8E E EEFP1

F F EF E F

P0

F F EF P EF E

F EF EF EEE

E F E E F F F FP

F EF EF EEE

E

P
F

E

10 2 3 4 5 6 710 2 3 4 5 6 7

Figure 2 [Baciu 1999]

minimum scale are reached [Brunet 1990; Baciu 1999].
The user can fix the subdivision and the depth of the tree
by specifying both the maximum and the minimum
scales.

 The representation of solids through octrees leads to
advantages in revealing the scenes (through simplifying
the algorithm of hiding the surface) and in simplifying
the CSG representation (simplifying the algorithms for
the boolean operations between 3D objects), when
talking about 3D scenes octree representated.

PRESENTING THE APPLICATION

 The graphical application proposed for the modeling
of recursion and trees concepts was made in Java using
the graphical functions package gl4java, the equivalent
for the OpenGL library for 3D graphics. As entring data,
the application receives the b-rep representation of a
solid. The representation is given as a file that contains
the vertex coordinates for the triangles margining the
solid. Starting from this definition of the solid, the
application makes an internal representation of the solid

as an octree. The solid is circumcised of a cube (Figure
3). Each node of the octree will contain a subcube, which
is the outcome of the original cube’s space division. The
nodes belonging to these cubes, which contain only
volumes that do not belong to the represented solid, will
have no children. Nodes related to cubes that contain a
whole volume of the solid, can be found in the same
situation. Nodes that contain both parts of solid volumes
and free space volumes will have eight children which
will be in one of the situations presented above.

 For the representation of the solid, the application
will use functions for hiding parts of surface,
highlighting, and so on, it already existing in gl4java
library. Subcube edges are going to be represented by the
application during the depth running through the tree.
What can be observed is that the dividing process
continues only for non-homogeneous volumes (Figure
4). The application allows visualizing the crossing in
depth of the volume, rotating the image or manipulating
the position of the image, bringing it closer or moving it
away. The algorithm limits the level of divisions in
subcubes at a maximum value. The application allows

both the direct and th
divisions of the volume

 Modeling the con
divisions of space at th
understanding of the re
the recursive procedur
parts of the cube that
volume. The additiona
number of levels, c

volume’s division until obtaining the volume elements –
voxels.
 The application’s interface allows navigating through
the octants of the representation, visualizing them from
any angle, rebuilding an octant belonging to a superior
level. All these facilities are captivating to students and
the understanding of a difficult abstract concept becomes
an enjoyable activity.

CONCLUSIONS

 The application shown above is useful to explaining
the concept of recursion within “Computers
programming”, subject that is taught to students in
computer science in the first two years. The application
is also useful to teaching concepts on solid
representation within the subject “Computer Graphics
Programming” which is taught in the fourth year of
studies at the same department. The application hasn’t
yet been used in teaching but we hope that next year it
will prove itself to be useful in the student’s learning
process.

REFERENCES

Figure 3

Figure 4

e reverse crossing of the spatial
 that circumcise the solid.

cept of recursion by repeated
e user’s free will, allows a better
cursion. The exit condition from
e is designed by dividing only
contain parts of the represented
l exit condition, after a limited

orresponds in graphics to the

Augenstein, M., Tenenbaum, 1976, A., A lesson in
Recursion and Structered Programming, Proceedings of
the ACM SIGCSE-SIGCUE technical symposium on
Computer science and education, pages 17-23.
Baciu, R., Volovici, D., 1999, Sisteme de prelucrare
grafică, Editura Albastră, Cluj.
Brunet, P., Nava, I., 1990, Solid Representation and
Operation Using Extended Octrees, ACM Transactions
on Graphics, Vol.9, No. 2, pages 170-197.
George, C., E., 2000, EROSI - Visualising Recursion
and Discovering New Errors, Procedings of SIGCSE
2000 Conference, Austin, TX, USA, pages 305-309.
Götschi, T., Sanders, I., Galpin, V., 2003, Mental
Models of Recursion, Proceedings of SIGCSE'03
Conference, Reno, Nevada, USA, pages 346-350.
Haberman, B., Averbuch, H., 2002, The Case of Base
Cases: Why are They so Difficult to Recognize? Student
Difficulties with Recursion, Proceedings of the
ITiCSE'02 Conference, Aarhus, Denmark, pages 84-88.
Henderson, P., B., Romero, F., J., 1989, Teaching
Recursion as a Problem-Solving Tool Using Standard
ML, Proceedings of the twentieth SIGCSE technical
symposium on Computer science education, Louisville,
Kentucky, USA, pages 27-31.
Naps, T., L., 1989, A Java Visualiser Class:
Incorporating Algorithm Visualisations into
Students'Programs, Proceedings of ITiCSE '98
Conference, Dublin, Ireland, pages 181-184.
Stern, L., Naish, L., 2002, Visual Representations for
Recursive Algorithms, Proceedings of SIGCSE'02
Conference, Covington, Kentucky, USA, pages 196-200.

